

R R Institute of Technol

RAJA REDDY LAYOUT. NEAR CHIKKABANAVARA RAILWAY STATION. CHIKKABANAVARA.

An Autonomous Institution under VTU

Approved by AICTE, New Delhi & Government of Karnataka

Course Title:	Fundamentals of	Semester	I
	Sensors Technology		
Course Code:	BETCK105K/205K	CIE Marks	50
Course Type (Theory/Practical/Integrated)	Theory	SEE Marks	50
(Theory/Practical/Integrated)	(ETC-I)	Total Marks	100
Teaching Hours/Week (L: T:P: S)	2:2:0:0	Exam Hours	03
Total Hours of Pedagogy	40 hours	Credits	03

Course Learning Objectives

- **CLO 1.** The student will come to know the various stimuli that are to be measured in real life instrumentation.
- **CLO 2**. The student will be able to select the right process or phenomena on which the sensor should depends.
- **CLO 3.** The student will be aware of the various sensors available for measurement and control applications.
- **CLO4.** To discuss the working of different types and classification of sensors and transducers.
- **CLO5.**To discuss the recent trends in sensor technology.

Teaching-Learning Process

- Adopt different types of teaching methods to develop the outcomes through
- Power Point presentations and Video demonstrations or Simulations.
- Arrange visits to show the live working models other than laboratory topics.
- Adopt collaborative (Group Learning) Learning in the class.
- Adopt Problem Based Learning (PBL), which foster students' Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Module-1 Sensors and transducers (8 hours)

Introduction to sensors and transducers. Need for sensors in the modern world. Different fields of sensors based on the stimuli - various schematics for active and passive sensors. Classification of Transducers. Advantages and Disadvantages of Electrical Transducers. Requirements and Specifications of electrical transducers.

(RBT Level:L₁,L₂,L₃)

Module-2 Sensors and transducers (Continued)

Strain Gauges-types, Load Cells, Proximity Sensors, Pneumatic Sensors, Light Sensors, Tactile Sensors, Smart Sensors, Fiber Optic Transducers, Digital Transducers- Frequency domain transducers, Digital Encoders, Digital Pressure transducers, Recent Trends – Smart Pressure Transmitters, Selection of Sensors, Rotary Variable Differential Transformer (RVDT), Synchros and Resolvers, Induction Potentiometers.

(RBT Level: L_2 , L_3)

Module-3 Measurement of Non – Electrical Quantities (8 hours)

Temperature Measurement- RTD, Thermistors, Thermocouple thermometers, Radiation pyrometers, Optical pyrometers. Wire Anemometers. liquid flow meters. (**RBT Level: L₂, L₃**)

Module-4 Measurement of Non – Electrical Quantities (continued (8 hours)

Measurement of Displacement, Measurement of Velocity/Speed, Measurement of Acceleration-Piezoelectric accelerometer, LVDT, Measurement of Torque, Measurement of Shaft Power, Measurement of Humidity, Gas analyzers

(RBT Level:L₂,L₃)

Module-5 Recent Technologies (8 hours)

Film sensors, Micro-electromechanical sensors, Nano-sensors. Applications of Sensors—On-board Automobile sensors, home appliance sensors, Aerospace sensors, Sensors for manufacturing, medical diagnostic sensors, Sensors for Environmental Monitoring.

(RBT Level:L₂,L₃)

Course outcome (Indicative)

At the end of the course the student will be able to:

- 1. Understand different types of sensors and transducers for electrical quantities.
- 2. Apply suitable technology, related to various sensors and transducers
- 3. Analyze the Measurement of Non-electrical quantities

Course Assessment and Evaluation Details (both CIE and SEE)

Continuous Internal Evaluation: 50 marks						
Theory Assessment Tool	Marks	Reduced marks				
IAT-1	25	25				
IAT-2	25					
Assessment -1	25	25				
Assessment-2(activity based)	25					

Semester End Examination (SEE): 50 marks

SEE	Marks	Reduced marks
Course end examination (Answer	100	50
any one question from each unit – Internal choice)		

Suggested Learning Resources:

Test Books

- 1. Electrical and Electronic Measurements and instrumentation R.KRajput S. Chand 3rdEdition, 2013
- 2. Sensors and Transducers, DPatranabis PHI Learning SecondEdition, May 2015

Reference Books

- 1. Sensors for safety and process control in hydrogen technologies. Hübert, Thomas, Lois Boon-Brett, and William Buttner CRC Press 2018
- 2. A Course in Electrical and Electronic Measurements and InstrumentationJohn .P. Uyemura, John Wiley A. K. Sawhney- Dhanpat Rai& Co., Delhi 2018 reprin

Web links and Video Lectures (e-Resources):

- NPTEL :: Electrical Engineering NOC:Sensors and Actuators
 - Bing Videos
 - Sensors and Transducers and Introduction (electronics-tutorials.ws)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Role play
- Circuit Debugging
- Visit to Electromechanical Industries

COs and POs Mapping (CO-PO mappings are only Indicative)

CO'S	PO's											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2							1			
CO2	3	2							1			
CO3	3	2							1	1		

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped